Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.

Identifieur interne : 000911 ( Main/Exploration ); précédent : 000910; suivant : 000912

The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.

Auteurs : N. Yeung [États-Unis] ; B. Gold ; N L Liu ; R. Prathapam ; H J Sterling ; E R Willams ; G. Butland

Source :

RBID : pubmed:21899261

Descripteurs français

English descriptors

Abstract

Monothiol glutaredoxins (mono-Grx) represent a highly evolutionarily conserved class of proteins present in organisms ranging from prokaryotes to humans. Mono-Grxs have been implicated in iron sulfur (FeS) cluster biosynthesis as potential scaffold proteins and in iron homeostasis via an FeS-containing complex with Fra2p (homologue of E. coli BolA) in yeast and are linked to signal transduction in mammalian systems. However, the function of the mono-Grx in prokaryotes and the nature of an interaction with BolA-like proteins have not been established. Recent genome-wide screens for E. coli genetic interactions reported the synthetic lethality (combination of mutations leading to cell death; mutation of only one of these genes does not) of a grxD mutation when combined with strains defective in FeS cluster biosynthesis (isc operon) functions [Butland, G., et al. (2008) Nature Methods 5, 789-795]. These data connected the only E. coli mono-Grx, GrxD to a potential role in FeS cluster biosynthesis. We investigated GrxD to uncover the molecular basis of this synthetic lethality and observed that GrxD can form FeS-bound homodimeric and BolA containing heterodimeric complexes. These complexes display substantially different spectroscopic and functional properties, including the ability to act as scaffold proteins for intact FeS cluster transfer to the model [2Fe-2S] acceptor protein E. coli apo-ferredoxin (Fdx), with the homodimer being significantly more efficient. In this work, we functionally dissect the potential cellular roles of GrxD as a component of both homodimeric and heterodimeric complexes to ultimately uncover if either of these complexes performs functions linked to FeS cluster biosynthesis.

DOI: 10.1021/bi2008883
PubMed: 21899261
PubMed Central: PMC3236052


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.</title>
<author>
<name sortKey="Yeung, N" sort="Yeung, N" uniqKey="Yeung N" first="N" last="Yeung">N. Yeung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720</wicri:regionArea>
<wicri:noRegion>California 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gold, B" sort="Gold, B" uniqKey="Gold B" first="B" last="Gold">B. Gold</name>
</author>
<author>
<name sortKey="Liu, N L" sort="Liu, N L" uniqKey="Liu N" first="N L" last="Liu">N L Liu</name>
</author>
<author>
<name sortKey="Prathapam, R" sort="Prathapam, R" uniqKey="Prathapam R" first="R" last="Prathapam">R. Prathapam</name>
</author>
<author>
<name sortKey="Sterling, H J" sort="Sterling, H J" uniqKey="Sterling H" first="H J" last="Sterling">H J Sterling</name>
</author>
<author>
<name sortKey="Willams, E R" sort="Willams, E R" uniqKey="Willams E" first="E R" last="Willams">E R Willams</name>
</author>
<author>
<name sortKey="Butland, G" sort="Butland, G" uniqKey="Butland G" first="G" last="Butland">G. Butland</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21899261</idno>
<idno type="pmid">21899261</idno>
<idno type="doi">10.1021/bi2008883</idno>
<idno type="pmc">PMC3236052</idno>
<idno type="wicri:Area/Main/Corpus">000899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000899</idno>
<idno type="wicri:Area/Main/Curation">000899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000899</idno>
<idno type="wicri:Area/Main/Exploration">000899</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.</title>
<author>
<name sortKey="Yeung, N" sort="Yeung, N" uniqKey="Yeung N" first="N" last="Yeung">N. Yeung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720</wicri:regionArea>
<wicri:noRegion>California 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gold, B" sort="Gold, B" uniqKey="Gold B" first="B" last="Gold">B. Gold</name>
</author>
<author>
<name sortKey="Liu, N L" sort="Liu, N L" uniqKey="Liu N" first="N L" last="Liu">N L Liu</name>
</author>
<author>
<name sortKey="Prathapam, R" sort="Prathapam, R" uniqKey="Prathapam R" first="R" last="Prathapam">R. Prathapam</name>
</author>
<author>
<name sortKey="Sterling, H J" sort="Sterling, H J" uniqKey="Sterling H" first="H J" last="Sterling">H J Sterling</name>
</author>
<author>
<name sortKey="Willams, E R" sort="Willams, E R" uniqKey="Willams E" first="E R" last="Willams">E R Willams</name>
</author>
<author>
<name sortKey="Butland, G" sort="Butland, G" uniqKey="Butland G" first="G" last="Butland">G. Butland</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography, Gel (methods)</term>
<term>Circular Dichroism (methods)</term>
<term>Dimerization (MeSH)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Humans (MeSH)</term>
<term>Iron (chemistry)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Mass Spectrometry (methods)</term>
<term>Models, Genetic (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Plasmids (metabolism)</term>
<term>Spectrophotometry (methods)</term>
<term>Spectrophotometry, Ultraviolet (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie sur gel (méthodes)</term>
<term>Dichroïsme circulaire (méthodes)</term>
<term>Dimérisation (MeSH)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Fer (composition chimique)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Plasmides (métabolisme)</term>
<term>Protéines Escherichia coli (composition chimique)</term>
<term>Spectrométrie de masse (méthodes)</term>
<term>Spectrophotométrie (méthodes)</term>
<term>Spectrophotométrie UV (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Glutaredoxins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Protéines Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromatography, Gel</term>
<term>Circular Dichroism</term>
<term>Mass Spectrometry</term>
<term>Spectrophotometry</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Chromatographie sur gel</term>
<term>Dichroïsme circulaire</term>
<term>Spectrométrie de masse</term>
<term>Spectrophotométrie</term>
<term>Spectrophotométrie UV</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dimerization</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dimérisation</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monothiol glutaredoxins (mono-Grx) represent a highly evolutionarily conserved class of proteins present in organisms ranging from prokaryotes to humans. Mono-Grxs have been implicated in iron sulfur (FeS) cluster biosynthesis as potential scaffold proteins and in iron homeostasis via an FeS-containing complex with Fra2p (homologue of E. coli BolA) in yeast and are linked to signal transduction in mammalian systems. However, the function of the mono-Grx in prokaryotes and the nature of an interaction with BolA-like proteins have not been established. Recent genome-wide screens for E. coli genetic interactions reported the synthetic lethality (combination of mutations leading to cell death; mutation of only one of these genes does not) of a grxD mutation when combined with strains defective in FeS cluster biosynthesis (isc operon) functions [Butland, G., et al. (2008) Nature Methods 5, 789-795]. These data connected the only E. coli mono-Grx, GrxD to a potential role in FeS cluster biosynthesis. We investigated GrxD to uncover the molecular basis of this synthetic lethality and observed that GrxD can form FeS-bound homodimeric and BolA containing heterodimeric complexes. These complexes display substantially different spectroscopic and functional properties, including the ability to act as scaffold proteins for intact FeS cluster transfer to the model [2Fe-2S] acceptor protein E. coli apo-ferredoxin (Fdx), with the homodimer being significantly more efficient. In this work, we functionally dissect the potential cellular roles of GrxD as a component of both homodimeric and heterodimeric complexes to ultimately uncover if either of these complexes performs functions linked to FeS cluster biosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21899261</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>50</Volume>
<Issue>41</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>8957-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi2008883</ELocationID>
<Abstract>
<AbstractText>Monothiol glutaredoxins (mono-Grx) represent a highly evolutionarily conserved class of proteins present in organisms ranging from prokaryotes to humans. Mono-Grxs have been implicated in iron sulfur (FeS) cluster biosynthesis as potential scaffold proteins and in iron homeostasis via an FeS-containing complex with Fra2p (homologue of E. coli BolA) in yeast and are linked to signal transduction in mammalian systems. However, the function of the mono-Grx in prokaryotes and the nature of an interaction with BolA-like proteins have not been established. Recent genome-wide screens for E. coli genetic interactions reported the synthetic lethality (combination of mutations leading to cell death; mutation of only one of these genes does not) of a grxD mutation when combined with strains defective in FeS cluster biosynthesis (isc operon) functions [Butland, G., et al. (2008) Nature Methods 5, 789-795]. These data connected the only E. coli mono-Grx, GrxD to a potential role in FeS cluster biosynthesis. We investigated GrxD to uncover the molecular basis of this synthetic lethality and observed that GrxD can form FeS-bound homodimeric and BolA containing heterodimeric complexes. These complexes display substantially different spectroscopic and functional properties, including the ability to act as scaffold proteins for intact FeS cluster transfer to the model [2Fe-2S] acceptor protein E. coli apo-ferredoxin (Fdx), with the homodimer being significantly more efficient. In this work, we functionally dissect the potential cellular roles of GrxD as a component of both homodimeric and heterodimeric complexes to ultimately uncover if either of these complexes performs functions linked to FeS cluster biosynthesis.</AbstractText>
<CopyrightInformation>© 2011 American Chemical Society</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yeung</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gold</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>N L</ForeName>
<Initials>NL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prathapam</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sterling</LastName>
<ForeName>H J</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Willams</LastName>
<ForeName>E R</ForeName>
<Initials>ER</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Butland</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM088196</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008295</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA082103</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM088196</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32GM08295</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM088196-02</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C568707">GrxD protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002850" MajorTopicYN="N">Chromatography, Gel</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013053" MajorTopicYN="N">Spectrophotometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
<ArticleId IdType="doi">10.1021/bi2008883</ArticleId>
<ArticleId IdType="pmc">PMC3236052</ArticleId>
<ArticleId IdType="mid">NIHMS326179</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2001 Jul;130(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;495:41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2002 May;131(5):713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 9;277(32):28380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Sep;45(6):1729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 May;52(3):861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Sep;70(9):5682-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Dec 1;8(12):3923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2684651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jul;173(14):4474-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1999 Jul;126(1):10-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10393315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jan 31;579(3):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15670813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15690043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 31;281(13):8958-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 30;440(7084):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2006;2:2006.0008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Jul;260(1):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Sep 19;45(37):11087-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 16;283(20):14084-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2008 Jan;251(1):62-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Sep;5(9):789-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18677321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2010 Dec 3;9(12):6740-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20936830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 28;275(30):22615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837463</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Butland, G" sort="Butland, G" uniqKey="Butland G" first="G" last="Butland">G. Butland</name>
<name sortKey="Gold, B" sort="Gold, B" uniqKey="Gold B" first="B" last="Gold">B. Gold</name>
<name sortKey="Liu, N L" sort="Liu, N L" uniqKey="Liu N" first="N L" last="Liu">N L Liu</name>
<name sortKey="Prathapam, R" sort="Prathapam, R" uniqKey="Prathapam R" first="R" last="Prathapam">R. Prathapam</name>
<name sortKey="Sterling, H J" sort="Sterling, H J" uniqKey="Sterling H" first="H J" last="Sterling">H J Sterling</name>
<name sortKey="Willams, E R" sort="Willams, E R" uniqKey="Willams E" first="E R" last="Willams">E R Willams</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Yeung, N" sort="Yeung, N" uniqKey="Yeung N" first="N" last="Yeung">N. Yeung</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000911 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000911 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21899261
   |texte=   The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21899261" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020